
May-June 1995

Published by the

Software Engineering

Working Group and the

Software Technology

Center to promote

software engineering

education

For more info e-mail Jennifer Gibson at stc@llnl.gov

LLNL Symposium on
Distributed Computing and

Massively Parallel Processing,
B123 Auditorium,

June 7-9, 1995

Coming later this summer,
Roger Bate of SEI will be here for
this seminar. More details to come...

Seminar on "Systems
Engineering Capability
Model"

Upcoming Events

TakeFive Demo
On June 21, in the south cafeteria:
TakeFive Software will demonstrate
SNiFF+, a programming environment
for Unix C and C++ development.
SNiFF+ incorporates software engineer-
ing capabilities such as impact analysis,
virtual workspace support and automated
documentation to create a software de-
velopment environment.

SNiFF+ includes a
comprehensive toolset providing team
support, code comprehension and
reverse engineering, edit-compile-debug
and documentation support, build
management and tool integration.

Together these tools are desinged
to improve developer productivity,
promote software reuse and enhance
software quality for even large projects
working with very complex software
systems.

Metrics Seminar
On August 19th, in the B439 Training
Room; Speakers will be Terri Quinn,
and Steve Wong.
 More details to come...

CCCCCCCC
CCCCCCCCCC
CCC CCC
CCC C CC
CCC C CC
CCC C CC
CCC CCC
CCCCCCCCCC
CCCCCCCC

1995 Symposium

Personal Software
Process Class

CTEC Send out a flier for
this class it will be starting on Au-
gust 11. Please read the flier or call
Christa Sobczak X2-4257 or the STC
for more details.

• Insure++ 2
• Software Architecture 3
• Metrics Food for Thought 3
• Offsite happenings 4
• Local LLNL Experts 5
• Focus On Metrics: Part 3 6
• Call for Participation............ 7
• Walkthrough info 7

In this issue:

UCRL-AR-121011

Software Engineering Newsletter2 of 8

finding things like memory leaks, but can also help
you immediately pinpoint bugs caused by things
such as out of bounds array references - even non-
unit-strided access to dynamically allocated arrays.

The downside to using Insight is the amount
of time it adds to the compile and execution of your
program. Compiles generally take about 5-7 times
longer than your standard C compiler without
optimization, and the increase in execution time is
on the same order. However, I have found that this
extra time spent more than pays off (by a long shot)
in the long run, as Insight virtually eliminates the
need to spend days tracking down a memory error
- which we all know is very frustrating.

In addition to the basic Insight tool described
above, there are several things bundled with the
Insure++ package which are quite helpful during
the software life cycle. "InUse" allows you to
interactively view at run time certain features of
your program such as memory usage, heap layout,
block sizes of mallocs, etc... "Invision" lets you
view memory access patterns for a particular piece
of code, and can thus give you help in optimizing
your algorithms. Both of these tools are graphically
based. The TCA (Total Coverage Analysis) tool is
especially useful during the testing phase. It keeps
track of each line of code which has been executed
by your program over the course of its lifetime,
thus allowing you to create input cases to test
branches of your code which have not yet ever been
executed.

In my opinion, nobody should program C
code without using some sort of system for finding
possible memory errors. Parasoft has invented an
excellent integrated system for doing this. For
more details, check out http://www.parasoft.com/
insure.html.

Insure++, A C Programmer's Prospective
Rob Neely, rneely@llnl.gov
L-035, X 3-4243

For a C programmer, there are two essential
items which, in my opinion, should be readily at
hand during a project: K&R's second edition, and
Insure++ from Parasoft.

One of the most immediately invaluable
tools in the Insure++ suite is called "Insight." Insight
helps right many of the wrongs with the C language
- namely the ability to tromp through memory at
will, giving no indication of anything being wrong.
Insight claims to catch:

+ Memory corruption due to reading or writing
beyond valid areas of global, local, shared, or
dynamically allocated object;

+ Operations of illegal, or unrelated pointers;
+ Reading uninitialized memory;
+ Memory leaks;
+ Errors allocating and freeing dynamic memory;
+ Some other things, which judicious use of an

ANSI C compiler will also catch.

I will personally testify that these claims are
entirely valid. Insight works by instrumenting the
source code with calls to all sorts of assertions.
Other competing products only work on object files,
and thus aren't quite as good at catching every last
memory error. I know - I've used them too.

I have been using Insight now for about 2 or
3 months on a medium scale project - about 15,000
lines of code and growing. Regardless of the fact
that my C code compiled cleanly under a C++
compiler, I was rather blown away at the number of
tiny (and not so tiny) errors my program had the first
time I ran it through Insight, even though it appeared
to run correctly on my workstation.

Since then, I have been using Insight as a
first line of defense in tracking down bugs that creep
into my program during a blast of new code additions.
Not only will it help you keep your code cleaner by

3 of 8

Software Architecture

The field of software architecture is an area
of active research in both industry and academia.
This year’s Software Technology Conference, with
an attendance of 2800, had an entire track devoted to
software architecture. There is not yet a consensus
on the definition of software architecture, but there is
general agreement that software architecture is both
a discipline of design and a representation of design
and identifies the following software attributes:

• Computational/functional and data components
• Connections between components, including

data flow and control flow
• Constraints, including communication

protocols, visibility, timing, and synchrony
• Topological notion of the structure formed by

components and their connections

There are architectural styles such as distrib-
uted, layered, and client/server. Examples of archi-
tectural constraints are throughput and timing. A
database management system can be an architectural
component. Architectural connectors include pro-
cedure calls and pipes.

Al Leibee, leibee1@llnl.gov,
L-307, X 2-1665

From the newsletter “IT Metrics Strategies”,
edited by Howard Rubin, on the topic of metrics
visualization—

“An excellent area for using these concepts
(of communicating information via graphical dis-
plays of information), and a prime candidate for
“metrics visualization” is the area of organizational
readiness. Information technology organizations
must constantly face change. Change may come in
the form of a new technology, a new methodology,
a new process discipline, and even a new business
environment. A core competency for today’s IT
organization is the ability to manage and navigate
change. To do so requires an understanding of the

dimensionality of the required change and the abil-
ity to chart a course to make it happen.

One way of doing this is through metrics
visualization. An organization must be able to
characterize its “as-is” state (where it is today) and
the attributes of it's “to-be” state. ...”

Also from “IT Metrics Strategies”, Howard
Rubin’s 1994 industry survey shows 47% of devel-
opment effort is spent on maintenance (corrective,
adaptive, and perfective activities) and 53% on new
development. In the software producing industry,
46% is spent on maintenance, 54% on new develop-
ment. The survey data was gathered from attendees

Continued on page 7...

Garlan and Shaw’s “An Introduction to Soft-
ware Architecture” (SEI-94-TR-02) lists the fol-
lowing areas of study for software architecture:

• Taxonomies of architectures and architectural
styles

• Formal models for characterizing and
analyzing architectures

• Notations for describing architectural designs
• Tools and environments for developing

architectural designs
• Techniques for extracting architectural

information from existing code
• Better understanding of the role of

architectures in the life-cycle process

UNISYS has put a Software Architecture
Technology Guide on the World-Wide Web at http:/
/www.stars.reston.unisysgsg.com/arch/guide.html.
The guide describes many of the concepts of soft-
ware architecture and has a bibliography of books,
papers, and articles on the subject.

Metrics Food For Thought and Facts
Al Leibee, leibee1@llnl.gov,
L-307, X 2-1665

Software Engineering Newsletter4 of 8

Upcoming Seminars and Conferences

June
19-20 Software Configuration Management; 2 day Seminar

Hyatt San Jose, California
Info or other course listings: (201) 478-5400

27-30 25th International Symposium on Fault-Tolerant Computing
Pasadena, California
Info: anonymous FTP, ftp.cs.ucla.edu: /pub/ftcs25

July
12-16 13th International System Safety Conference

Red Lion Inn San Jose, California
Contact: Michael Scannell (408) 742-9581

 or mscannell@lmsc.lockheed.com

14-16 2nd Working Conference on Reverse Engineering
Toronto, Ontario, Canada
in conjunction with CASE'95
Info: Hausi Muller, hausi@csr.uvic.ca

Sept
 27-29 13th Annual Pacific Northwest Software Quality Conference

Portland, Oregon Convention Center
Contact: Terri Moore (503) 223-8633

Nov
6-10 1st International Conference on Engineering of Complex Computer Systems

Southern Florida
Info: Alexander Stoyenko, alex@vulcon.njit.edu

The following are being offered by the Software Engineering Institute. For more info:

Internet: registration@sei.cmu.edu or Phone: 412 / 268-7388

June 20-22 Defining Software Processes
 28-29 Annual Disciplined Engineering Workshop:
 Effective Practice in Performance Engineering

 August 15-17 Engineering an Effective Software Measurement Program

 Sept 11-14 SEI Software Engineering Symposium
 18-22 Consulting Skills Workshop

5 of 8

SEWG Members:

Bill Aimonetti, 3-2678
Bill Buckley, 3-4581,
Bob Corey, 3-3271
Antonia Garcia, 3-9884
Howard Guyer, 3-7671
Al Leibee, 2-1665
Judith Littleton, 3-4403
Donna Nowell, 2-1515
Jerry Owens, 2-1646
Carolyn Owens, 3-6085
Carmen Parrish, 2-9810
Suzanne Pawlowski, 3-0115
Frank Ploof, 2-6990
Terri Quinn, 3-2385
Denise Sumikawa, 2-1831
John Tannahill, 3-3514
Booker Thomas, 3-8800
Ernie Vosti, 3-0604
Jeff Young, 3-8333
Bill Warren 2-5331
Candy Wolfe, 2-1863

JAD/FIND
Candy Wolfe

If you need consulting help with a
project involving software
engineering, consider contacting
one of the local LLNL experts.

Reviews and Walkthroughs
Carmen Parrish
Warren Persons, 2-3349
Jeff Young
Carolyn Owens

Performance, Reliability & Safety
Dennis Lawrence

Reverse Engineering
Jeff Young
Al Leibee

Requirements Modeling/OOD
Debbie Sparkman

Testing
Warren Persons, 2-3349
Nancy Storch
Al Leibee

Software Quality Assurance
Warren Persons, 2-3349

CASE Tools
Suzanne Pawlowski
Jeff Young

Configuration Management
Al Leibee
Carmen Parrish

Project Estimation/Management
Howard Guyer, 3-7671
Carolyn Owens

Local Lab experts offer advice, expertise
(most of these people belong to the Software Engineering Working Group, SEWG)

Upcoming Seminars and Conferences

SEWG Meetings are held every 1st
and 3rd Thursday 3:00 to 4:00, in
B218, Room 114.

Software Engineering Newsletter6 of 8

Focus On Metrics: Part 3

In the previous issue, I described a top-down
approach for determining the metrics to be collected.
This was the Goal/Question/Attribute/Metric method
that starts by defining high-level business goals and
then derives from these goals the metrics needed to
support them. The bottom-up approach starts with
measurable observations and then builds up
management objectives and goals. The bottom-up
method I’ll describe in this article was developed by
Bill Hetzel, author of the book “Making Software
Measurement Work”, and by Bill Silver. Their method
focuses on the work products of the software
development process. Examples of work products are
design specifications, source code, and test cases. The
eventual work product is the system used by the
customer. Their method, the IOR method, specifies
three categories of metrics to be defined for each work
product—-

1. Input metrics
Metrics that quantify the resources,
activities, and other work products used in
the creation of the work product.

2. Output metrics
Metrics that quantify the work product
itself such as a size metric.

3. Results metrics
Metrics that quantify the usefulness and
quality of the work product.

For example, suppose the work product is the
source code module. The IOR metrics might be—-

1. Input metrics
The effort, quantified by engineering-
hour, that went into producing the
source code modules. The effort is
broken down by activity (coding,
documenting).

Since the source code module
work product’s creation depends on
the work products that preceded it such
as the design specs, the input metrics
would also include the Output and
Results metrics of those work products.

2. Output Metrics
The size of the source code module as
quantified by SLOC (Source Lines Of
Code).

The complexity of the source
code module as quantified by
cyclomatic complexity.

3. Results metrics
The quality of the source code module
as quantified by the number of defects
and the number of changes made since
checking.

The premise of their IOR method is that
these metrics on the work products are fundamental
and independent of management’s particular goals
and will therefore provide answers to any relevant
questions. The metrics themselves will stimulate
questions and provide insight about the software
development process.

In the next issue, I will describe some metrics
commonly used in industry.

 If you missed Part 1 or Part 2. Please call Al Leibee X2-1665,
 or Jennifer Gibson, X3-8543 for a copy.

Al Leibee, leibee1@llnl.gov,
L-307, X 2-1665

7 of 8

The “Master Plan for Software Engineering
Standards” was approved and published by the
IEEE Software Engineering Standards
Committee (SESC) in December 1993. This
plan “documents a statement of direction for the
improvement of software engineering standards
for a ten year period.” A number of planning
groups were established in 1994 to prepare plans
on specific topics; more are being created in
1995. The Software Safety Planning Group
(SSPG) was created in early May, 1995. I am the
chairman of this planning group.

The purpose of the SSPG is “to determine a
statement of direction for IEEE standards for
software safety.” The SSPG is responsible for
refining its initial charter and obtaining SESC
approval of the revised charter, and preparing a
draft Action Plan. Target dates for approval of
the revised charter and action plan are September
1995 and June 1996, respectively.

I invite all interested persons to join the planning
group. I expect most of the work to be done via
electronic mail, so distance and travel difficulties
will not preclude participation. I am particularly
interested in including people from all parts of the
world. Each member is welcome to participate as
much or as little as desired - from helping write the
action plan to passive observation - all are welcome.

If you wish to join the planning group, please
submit this information to address listed below:
 Your name, Company affiliation, (if any),
 Regular mail address, Phone number,
 Fax number, Electronic mail address.

Dr. J. Dennis Lawrence
 Lawrence Livermore National Laboratory
 7000 East Avenue, L-632
 Livermore, CA 94550 USA
 E-mail: lawrence2@llnl.gov

 j.lawrence@ieee.org

The Software Technology Center has a
1.5 hour Walkthrough Tutorial that is designed to
be given to project teams.

 The tutorial explains the benefits and
mechanics of a walkthrough and includes a hands-
on session. If your project team is interested in
learning more about walkthroughs in a short
amount of time, then contact the STC at ext. 3-
8333. For information on the effectiveness of
software inspections (similar to walkthroughs) in
industry, see the related article in the Jan-Feb '95
issue of this newsletter.

Walkthrough Tutorial... Continued From page 3

of Rubin’s seminars. The survey also showed that
the top three information technology priorities for
companies are—

1. Business alignment.
2. Reengineering the business with informa-

tion technology.
3. Upgrading skills.

Within the software producing industry, the
top three are Quality, Metrics, and Skills.

Metrics Food For Thought
and Facts

Call for Participation
IEEE Software Engineering Standards Safety Planning Group

Software Engineering Newsletter8 of 8

 NOTICE

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, Lawrence Livermore
National Laboratory, nor the University of California nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial products, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government thereof, and shall not
be used for advertising, product endorsement or commercial purposes.

This work was performed under the auspices of the U.S. Dept. of Energy at LLNL
under contract no. W-7405-Eng-48.

STC WWW Pages
External: http://www.llnl.gov/stc/stc.html

or
Internal: http://www.llnl.gov/llnl_only/stc/

Software Engineering Newsletter

Technical Editor: Jeff Young,
(510) 423-8333, L-548, jeffyoung@llnl.gov

Newsletter Compositor & Designer: Jennifer Gibson,
(510) 423-9347, L-307, jlgibson@llnl.gov

General Information or article submission:
(510) 423-8543, stc@llnl.gov

